23,496 research outputs found

    Satellite range delay simulator for a matrix-switched time division multiple-access network simulator

    Get PDF
    The Systems Integration, Test, and Evaluation (SITE) facility at NASA Lewis Research Center is presently configured as a satellite-switched time division multiple access (SS-TDMA) network simulator. The purpose of SITE is to demonstrate and evaluate advanced communication satellite technologies, presently embodied by POC components developed under NASA contracts in addition to other hardware, such as ground terminals, designed and built in-house at NASA Lewis. Each ground terminal in a satellite communications system will experience a different aspect of the satellite's motion due mainly to daily tidal effects and station keeping, hence a different duration and rate of variation in the range delay. As a result of this and other effects such as local oscillator instability, each ground terminal must constantly adjust its transmit burst timing so that data bursts from separate ground terminals arrive at the satellite in their assigned time slots, preventing overlap and keeping the system in synchronism. On the receiving end, ground terminals must synchronize their local clocks using reference transmissions received through the satellite link. A feature of the SITE facility is its capability to simulate the varying propagation delays and associated Doppler frequency shifts that the ground terminals in the network have to cope with. Delay is achieved by means of two NASA Lewis designed and built range delay simulator (RDS) systems, each independently controlled locally with front panel switches or remotely by an experiment control and monitor (EC/M) computer

    On straight words and minimal permutators in finite transformation semigroups.

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerMotivated by issues arising in computer science, we investigate the loop-free paths from the identity transformation and corresponding straight words in the Cayley graph of a finite transformation semigroup with a fixed generator set. Of special interest are words that permute a given subset of the state set. Certain such words, called minimal permutators, are shown to comprise a code, and the straight ones comprise a finite code. Thus, words that permute a given subset are uniquely factorizable as products of the subset's minimal permutators, and these can be further reduced to straight minimal permutators. This leads to insight into structure of local pools of reversibility in transformation semigroups in terms of the set of words permuting a given subset. These findings can be exploited in practical calculations for hierarchical decompositions of finite automata. As an example we consider groups arising in biological systems

    On the uniqueness of almost-Kaehler structures

    Get PDF
    We show uniqueness up to sign of positive, orthogonal almost-Kaehler structures on any non-scalar flat Kaehler-Einstein surface.Comment: 4 pages, to appear in CRA
    • 

    corecore